2-bromooctane (16),¹² and 3β -OMs- 5α -cholestane (17)¹³ are prepared as described.

Preparation of P⁺[F⁻, 1.5HF] (1d). Wet commercial resin in the chloride form Amberlyst A 26 or Amberlite IRA 900 (50 g, ca. 0.1 molar equiv), packed in a polyethylene column, were washed with an aqueous solution of 2 M NaOH until elimination of chloride ions (AgNO₃ test) and then with water until neutrality, and 220 mL of a 1 M HF aqueous solution were passed through the column. The resin was washed with acetone (50 mL) followed by diethyl ether (50 mL) and then poured into 400 mL of benzene, and a further dehydration was achieved by distilling the azeotrope water-benzene. The resin was filtered and dried in the air. Titration by sodium hydroxide gave the acidity of the resin, approximately 6 mequiv g^{-1} as H^+ , which corresponds to the formula P+[F-, 1.5 HF].

Preparation of the Fluoride P⁺F⁻ (1a). The wet form $P^+[F^-, F^-]$ 1.5HF] (1d) obtained as above after the reaction of 1 M HF was washed with water until neutrality. Then the resin was washed with acetone (50 mL) followed by diethyl ether (50 mL), and an additional dehydration performed by distilling the azeotrope water-benzene in the same conditions as with 1d leads to the dried form $P^{+}F^{-}(1a)$.

Preparation of the Hydrogen Difluoride $P^+HF_2^-$ (1b). Dried $P^+H_2F_3^-$ (1c) (see ref 3b) (5.2 g, ca. 0.02 molar equiv) was stirred in 8 mL of 0.2 M NaOH (0.017 mol) at room temperature for 20 min. Then the resin was filtered and washed with acetone (10 mL) followed by diethyl ether (10 mL), and an additional dehydration was achieved by distilling the azeotrope waterbenzene from 80 mL of benzene. The resin was filtered and dried in the air, and the titration with NaOH gave an average acidity of 3.8-4.6 mequiv g^{-1} (H⁺), which corresponds respectively to P⁺[F⁻, 0.9HF] and P⁺[F⁻, 1.1HF].

The same procedure can be used from dried 1d with convenient amounts of sodium hydroxide.

General Procedure for the Reactions of the Reagents 1a-c with the Bromo Ketones 2-4. To 0.01 mol of bromo ketone 2-4 dissolved in CCl₄ (30 mL) was added the reagent 1a (10 g, ~ 0.04 mol F⁻), or 1b (5 g, ~ 0.02 mol HF₂⁻), or 1c (5.5 g, ~ 0.02 mol $H_2F_3^{-}$). The reaction mixture, contained in a 50-mL roundbottomed flask equipped with a reflux condenser and a CaCl₂ tube, was heated under stirring (for the temperature and the reaction times, see Table I). After cooling to room temperature, the resin was filtered off and washed with dry diethyl ether (50 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated; then the crude reaction mixture was analyzed by ¹H and ¹⁹F NMR. The obtained products were identified unambiguously by comparison with data from literature and if necessary by high-resolution mass spectrometry.

2-Fluoro-1-phenylethanone (5). ¹H NMR: CH₂F 5.53 (d, ${}^{2}J_{\text{HF}} = 47$) [lit.²⁶ 5.4, ${}^{2}J_{\text{HF}} = 48$]. ¹⁹F NMR: -230.3 (t, ${}^{2}J_{\text{HF}} = 47$) [lit.¹⁴ -231.9, ${}^{2}J_{\text{HF}} = 47$].

2-Hydroxy-1-phenylethanone (6). ¹H NMR: CH₂ 4.83 (s), OH 3.4 (s) [lit.¹⁵ CH₂ 4.85 (s), OH 3.1 (s)].

2-Chloro-1-phenylethanone (7). ¹H NMR: CH₂ 4.72 (s) [lit.¹⁶ 4.75 (s)].

2-Fluoro-1-phenylpropanone (8). ¹H NMR: 1.58 (dd, 3 H), 5.6 (dq, 1 H), ²J_{HF} = 48.7, ³J_{HF} = 24, ³J_{HH} = 6.8 [lit.¹⁷ 1.61 (dd, 3 H), 5.48 (dq, 1 H), ²J_{HF} = 48.7, ³J_{HF} = 23.5, ³J_{HH} = 6.7]. ¹⁹F NMR: -180.5 (sext), ²J_{HF} = 48.2, ³J_{HF} = 24.1. **2-Hydroxy-1-phenyl-1-propanone** (9). ¹H NMR: CH₃ 1.35 (d, J = 7), OH 4.9 (s) [lit.¹⁵ CH₃ 1.35 (d), CH 4.97 (q, J = 7), OH 4.95 (s)]. Note: the CH signal centered at as $\delta = 5$ is not wall

4.95 (s)]. Note: the CH signal, centered at ca. $\delta = 5$, is not well resolved as it is mixed with one of the two quadruplets provided by the CHF group in 8 and with the OH signal.

2-Chloro-1-phenyl-1-propanone (10). ¹H NMR: CH₃ 1.68 (d, J = 7) [lit.¹⁸ 1.65].

2-Fluoro-2-methyl-1-phenyl-1-propanone (11). ¹H NMR: CH₃ 1.68 (d, 6 H), ${}^{3}J_{HF} = 21.8$. ${}^{19}F$ NMR: -142.1 (hept), ${}^{3}J_{HF} = 21.6$ [lit. 19 -144, ${}^{3}J_{HF} = 22$].

2-Methyl-1-phenyl-2-propen-1-one (12). ¹H NMR: 2.07 (dd, $3 H, J \sim 1.3$, 5.63 (m, 1 H), 5.92 (m, 1 H, $J \sim 1.3$). HRMS: m/e (M^+) calcd for $C_{10}H_{10}O$: 146.073, found 146.075.

2-Hydroxy-2-methyl-1-phenyl-1-propanone (13). ¹H NMR: 1.53 (s, 6 H), 3.75 (s, 1 H) [lit.¹⁹ 1.5 (s, 6 H), 3.85 (s, 1 H)]. 2-Chloro-2-methyl-1-phenyl-1-propanone (14). ¹H NMR: CH₃ 1.9 (s) [lit.²⁰ 1.9 (s)].

General Procedure for the Reactions of the Reagents 1a-c with the Compounds 15-17. 1a (10 g, $\sim 0.04 \text{ mol } \overline{F}$), 1b (5 g, ~0.02 mol HF₂⁻), or 1c (5.5 g, ~0.02 mol H₂F₃⁻) was added into a 50-mL round-bottomed flask equipped with a reflux condenser and a CaCl₂ tube to 0.01 mol of compound 15-17 dissolved in 30 mL of solvent (CCl₄ or n-dodecane for compounds 15 and 16, n-octane for compound 17, see below), and the reaction mixture was heated under stirring (for the temperature and the reaction times, see Table II). The analyses of the reaction products were carried out as follows.

The reactions with compounds 15 and 16 were followed by ¹H NMR when CCl_4 was used, that which allows to determine the overall yield of transformation and to estimate the relative yields of 2-fluorooctane (18) and octenes. *n*-Dodecane as a solvent was used for an accurate analysis of the obtained products by GLC (oven temperature 70 °C).

The reaction of compound 17 in *n*-octane was followed by ${}^{1}H$ NMR. The usual workup after the reaction gave a crude reaction mixture of 3α -fluoro- 5α -cholestane (19) and 2-cholestene (20) which was analyzed by ¹H and ¹⁹F NMR.

2-Fluorooctane (18). ¹H NMR: CHF 4.55 (dm, 1 H, ${}^{2}J_{\text{HF}} = 48$) [lit.^{2e} 4.57, ${}^{2}J_{\text{HF}} = 49$]. ¹⁹F NMR: -170.8, ${}^{2}J_{\text{HF}} = 49$ [lit.^{2m} -172.5, ${}^{2}J_{\text{HF}} = 46$].

3α-Fluoro-5α-cholestane (19). ¹H NMR: CHF 4.8 (dm, 1 H, ${}^{2}J_{\text{HF}} = 48$). ${}^{19}\text{F}$ NMR: -179.4 (dm, ${}^{2}J_{\text{HF}} = 47$) [lit.^{2f} ${}^{1}\text{H}$ 4.8; ¹⁹F –181; ² $J_{\rm HF}$ = 47.9]. The epimer 3 β -fluoro-5 α -cholestane was detected in the ¹⁹F spectrum as a very small doublet with $\delta = -166$ [lit.^{2f} -167.6].

2-Cholestene (20). ¹H NMR: CH=CH 5.6 (m) [lit.²¹ 5.6 (m)].

Acknowledgment. We are indebted to Professor A. Gorgues for valuable discussions during this work.

Registry No. 2, 70-11-1; 3, 2114-00-3; 4, 10409-54-8; 5, 450-95-3; 6, 582-24-1; 7, 532-27-4; 8, 21120-36-5; 9, 5650-40-8; 10, 6084-17-9; 11, 71057-10-8; 12, 769-60-8; 13, 7473-98-5; 14, 7473-99-6; 15, 924-80-1; 16, 557-35-7; 17, 3381-51-9; 18, 407-95-4; 19, 3856-83-5; [F, 1.5HF], 100830-75-9; F⁻, 16984-48-8; HF₂⁻, 18130-74-0; H₂F₃⁻, 12260-12-7; amberlyst A 26l, 39339-85-0; amerlite IRA 900, 9050-97-9; 2-octene, 111-67-1; 1-octene, 111-66-0.

(18) Luong Thi, N. T.; Rivière, H.; Spassky, A. Bull. Soc. Chim. Fr. 1972. 2102.

(19) House, H. O.; Prabhu, A. V.; Wilkins, J. M.; Lee, L. F. J. Org. Chem. 1976, 41, 3067.

(20) Russell, G. A.; Mudryk, B.; Jawdosiuk, M.; Wrobel, Z. J. Org. Chem. 1982, 47, 1879.

(21) Crabbé, P.; Leon, C. J. Org. Chem. 1970, 35, 2594.

Chemistry and Composition of (Trialkylsilyl)cuprates Derived from Cuprous Halides

Sunaina Sharma and Allan C. Oehlschlager*

Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Received April 27, 1989

Since the discovery of R_2 CuLi by Gilman¹ in 1952, most organocuprate chemistry has favored alkyl-based reagents which are known to exist as both lower order² and higher

⁽¹¹⁾ Crossland, R. K.; Servis, K. L. J. Org. Chem. 1970, 35, 3195. (12) Vogel, A. I. Textbook of Practical Organic Chemistry, 4th ed.;

Longman: New York, 1978; p 389. (13) Douglas, G. H.; Ellington, P. S.; Meakins, G. D.; Swindells, R. J. Chem. Soc. 1959, 1720.

⁽¹⁴⁾ Middleton, W. J.; Bingham, E. M. J. Am. Chem. Soc. 1980, 102, 4846.

Pascal, Y. L. Ann. Chim. (Paris) 1968, 14 (3), 245.
 The Aldrich Library of NMR Spectra 1974, 6, 17B.
 Jullien, R.; Thoi-Lai, N. Bull. Soc. Chim. Fr. 1968, 3948.

⁽¹⁾ Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem. 1952, 17, 1630.

Figure 1. ²⁹Si NMR spectra in THF of (a) PhMe₂SiLi, (b) PhMe₂SiLi:CuBr, 1:1, (c) PhMe₂SiLi:CuBr, 1.5:1, (d) PhMe₂SiLi:CuBr, 2:1, (e) PhMe₂SiLi:CuBr, 3:1 (inset 1e), PhMe₂SiLi:CuCN, 3:1 (f) PhMe₂SiLi:CuBr, 4:1, the spectra were run at -50 °C.

order³ species. Recently, silvlcuprates $[(R_3Si)_nCuLi_{n-1}]$. $LiX]^4$ and stannylcuprates $[(R_3Sn)_nCuLi_{n-1}\cdot LiX]^5$ have joined the alkylcuprates at the forefront of synthetic methodology. The propensity of these mixed metallocuprates to participate in an impressive number of synthetic elaborations accounts for their increasing popularity among organic chemists.⁶ And yet, the structures of $[(R_3Si)_nCuLi_{n-1}·LiX]$ and $[(R_3Sn)_nCuLi_{n-1}·LiX]$ proposed to date have been based solely on the stoichiometries of the solutions generated from mixtures of their precursors.

In the course of our study on the nature⁷ and synthetic potential of higher order metallocuprates, (R₃Si)₂Cu-(CN)Li₂, it has been demonstrated, not unexpectedly, that in their preparation the Cu-CN moiety remained intact as shown by infrared spectroscopy. This lack of simple metal-metal exchange (i.e., R₃SiLi + CuCN # R₃SiCu + LiCN) can be attributed to the likelihood of $d\pi$ backbonding between the copper and nitrile ligand.⁸ More

(7) Sharma, S.; Oehlschlager, A. C. Tetrahedron, symposia-in-print on organocopper chemistry 1989, 45, 557.

Figure 2. ¹³C NMR spectra in THF at 0 °C of (a) PhMe₂SiLi, (b) PhMe₂SiLi:CuBr·Me₂S, 1:1, (c) PhMe₂SiLi:CuBr·Me₂S, 2:1, (d) $PhMe_2SiLi:CuCN$, 2:1.

remarkable was the observation that the addition of 3 equiv of R_3SiLi , 1 (R = PhMe₂), to CuCN resulted in the unprecedented formation of (PhMe₂Si)₃CuLi₂,⁷ 2, rather than (PhMe₂Si)₂Cu(CN)Li₂, 3, and free PhMe₂SiLi as was found in the case of alkylcuprates derived from CuCN.⁹ This unusual stability was also attributed to significant π bonding between silicon and copper in these species.⁷

Whether such an equilibrium exists in the case of copper halide derived silyl cuprates, however, remained to be elucidated. In this paper we present $^{29}\rm{Si},^{10}$ $^{13}\rm{C},^{11}$ and $^{7}\rm{Li},^{12}$ NMR spectroscopic investigations of the composition of silylcuprates derived from (dimethylphenylsilyl)lithium (1) and CuX (where X = Br or I). We also discuss the effect of the halide salts on the nature of these cuprates.

Results and Discussion

Reaction of PhMe₂SiCl with lithium metal in THF gave a LiCl-containing solution of 1.13 Preparations were conducted at -5 °C in THF and 1 gave a ²⁹Si signal at -28.5 ppm (Figure 1a). Solutions of silylcuprates⁴ were generated by addition of THF solutions of 1 to CuBr·Me₂S at -50 °C. The combination of equimolar amounts of 1 and CuBr·Me₂S yielded a suspension in which most of the ²⁹Si signal was lost (Figure 1b). The resulting ²⁹Si spectrum contained several signals in the -10 to -25 ppm region which were attributed to polymeric "PhMe₂SiCu" (5). In agreement with the observations made using ²⁹Si NMR, most ¹³C signal was also lost in solutions containing equimolar amounts of 1 (Figure 2a) and $CuBr \cdot Me_2S$. The signals that were visible were due to (PhMe₂Si)₂ (Figure 2b).

The combination of 1 and $CuBr \cdot Me_2S$ in a 1.5:1 molar ratio gave a nearly homogeneous solution exhibiting a ²⁹Si

⁽²⁾ Posner, G. H. An Introduction to Synthesis Using Organocopper Reagents; Wiley Interscience: New York, 1980. Posner, G. H. Org. React. 1972, 19, 1

⁽³⁾ Lipshutz, B. H. Synthesis 1987, 325 and references cited therein. (4) (a) Chen, H. M.; Öliver, J. P. J. Organomet. Chem. 1986, 316, 255.
 (b) Fleming, I.; Newton, T. W. J. Chem. Soc., Perkin Trans. 1 1984, 1805. (c) Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc., Perkin Trans.

^{1 1981. 2527.}

^{(5) (}a) Piers, E.; Chong, J. M. Can. J. Chem. 1988, 66, 1425. (b) Piers,
E.; Morton, H. E.; Chong, M. J. Can. J. Chem. 1987, 65, 78. (c) Westmijze, H.; Ruitenberg, K.; Meijer, J.; Vermeer, P. Tetrahedron Lett. 1982, 2797. (d) Hudec, J. J. Chem. Soc., Perkin Trans. 1 1975, 1020.

^{(6) (}a) For silvlcuprates, see: Fleming, I.; Rowley, M.; Cuadrado, P.; Gonzalez-Nogal, A.-M.; Pulido, F.-J. Tetrahedron symposia-in-print on organocopper chemistry 1989, 45, 413 and references cited therein. (b) For stannylcuprates, see: Piers, E.; Chong, M. J.; Morton, H. E. Tetrahedron symposia-in-print on organocopper chemistry 1989, 45, 363 and references cited therein.

⁽⁸⁾ Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; Wiley Interscience: New York, 1972.

⁽⁹⁾ Lipshutz, B. H.; Kozlowski, J. A.; Wilhelm, R. S. J. Org. Chem. 1984. 49. 3943.

^{(10) (}a) Brevard, C.; Granger, P. Handbook of High Resolution Multinuclear NMR; Wiley Interscience: New York, 1981. (11) (a) Mann, B. E.; Taylor, B. F. ¹³C NMR Data for Organometallic

Compounds; Academic Press: New York, 1981. (b) Harris, R. K. Nuclear Magnetic Resonance Spectroscopy; Pitman: London, 1983.

^{(12) &}lt;sup>7</sup>Li has natural abundance of 92.58%, NMR receptivity compared to ¹³C of 1540, and a gyromagnetic ratio of 10.396. (13) George, M. V.; Paterson, D. J.; Gilman, H. J. Am. Chem. Soc.

^{1960. 82. 403.}

signal at -24.4 ppm attributed to (PhMe₂Si)₂CuLi, 6 (Figure 1c). The assignment of this signal to 6 was facilitated by the observation that at a 2:1 ratio of 1 to $CuBr \cdot Me_2S$ the signal at -24.4 ppm remained intense while a minor signal at -18.9 ppm appeared (Figure 1d). A signal at -24.4 ppm has previously been observed for $(PhMe_2Si)_2Cu(CN)Li_2$ (3) produced by the reaction of 2 equiv of 1 and CuCN.7 That (PhMe₂Si)₂CuLi (6) and (PhMe₂Si)₂Cu(CN)Li₂ (3) are different species is confirmed by ¹³C NMR spectral analysis (compare Figure 2c with Figure 2d). The ¹³C NMR spectrum of 6 consists of four resonances in the phenyl region (δ 162.0, ipso; 134.7, ortho; 126.3, meta; 123.9, para), one due to DMS (17.8 ppm), and a methyl signal at 6.04 ppm (Figure 2c) whereas 3 exhibited resonances at 157.4 ppm, ipso; 134.9 ppm, ortho; 126.5 ppm, meta; 124.6 ppm, para; a nitrile carbon at 156.7 ppm; and a methyl signal at 5.1 ppm (Figure 2d). As previously reported, evidence for the formulation of 3 came from the infrared analysis of this solution which shows a bound nitrile ($\nu_{CN} = 2123 \text{ cm}^{-1}$) but no free LiCN.⁷ The coincidence of the ²⁹Si chemical shifts of 3 and 6 is attributed to the narrow chemical shift window of this nucleus and suggests a similar electronic environment for silicon in 3 and 6.

Solutions containing 1 and CuBr·Me₂S in a 3:1 ratio exhibited a significant signal at -18.9 ppm as well as a small signal assigned to 6 (-24.4 ppm, Figure 1e). An attractive formulation for the species exhibiting a ²⁹Si signal at -18.9 ppm is (PhMe₂Si)₃CuLi₂ (2).^{7,14} The chemical shift of this species is identical with that previously observed for (PhMe₂Si)₃CuLi₂⁷ (prepared from 3 equiv of 1 and CuCN, Figure 1e inset). Secondly, the ¹³C NMR spectra at -70 °C of the two solutions exhibited identical chemical shifts for silyl-bound methyl and phenyl signals (δ 163.3, ipso; 133.5, ortho; 125.0, meta; 121.8, para; and a methyl signal at 6.7 ppm).

That the conversions of 5 to 6 and 6 to 2 are reversible were shown by addition of CuBr·Me₂S to 2 whose ²⁹Si NMR spectrum is shown in Figure 1e. Addition of 0.5 equiv resulted in the regeneration of (PhMe₂Si)₂CuLi (6). Further introduction of 1 equivalent CuBr·Me₂S to 6 resulted in the regeneration of "PhMe₂SiCu" (5).

While no PhMe₂SiLi (1) was detectable in solutions containing 1 and CuBr·Me₂S in a 3:1 ratio, a substantial amount of 1 appeared in the spectrum of solutions where this ratio was 4:1 (Figure 1f).

Figure 3. ¹³C NMR spectra in DMS at -85 °C of (a) PhMe₂SiLi:CuBr·Me₂S, 2:1, (a') PhMe₂SiLi:CuBr·Me₂S, 2:1, in THF, (b) PhMe₂SiLi:CuI, 2:1, (c) PhMe₂SiLi:CuBr·Me₂S, 3:1, (d) PhMe₂SiLi:CuI, 3:1.

This interpretation was reinforced by a positive Gilman test¹⁵ for 1 in THF and a negative test for all solutions of 1 containing CuBr·Me₂S, including those where these reagents were present in a 3:1 ratio. A slight green coloration was observed for solutions composed of 4:1 1:CuBr·Me₂S, indicating small quantities of PhMe₂SiLi.

The relative intensities of the ²⁹Si signals, attributed to contributing species in solutions whose spectra are shown in Figure 1, suggest the equilibrium between PhMe₂SiLi (1), "PhMe₂SiCu" (5), and (PhMe₂Si)₂CuLi (6) lies significantly on the side of 6 (i.e., $k_1 \gg k_{-1}$, Scheme I). In solutions comprised of 3:1 PhMe₂SiLi:CuBr·Me₂S, (PhMe₂Si)₃CuLi₂ (2) predominates over (PhMe₂Si)₂CuLi by ~4:1 (Scheme I). The values of K_2^{16} and the errors¹⁷ reported were calculated by averaging three determinations.

The ease with which we were able to differentiate between the higher order silylcuprates derived from CuCN and the lower order reagents prepared from CuBr·Me₂S by ¹³C NMR encouraged us to undertake a study of the complexation of LiX with these reagents. Specifically, we constructed solutions containing (PhMe₂Si)₂CuLi using CuBr·Me₂S or CuI in DMS or THF. The ¹³C NMR spectra were recorded in the region between 0 and 10.0 ppm with the goal of observing the resonances due to the silicon methyl carbons.

At -85 °C in DMS, the ¹³C NMR spectrum (Figure 3a) of (PhMe₂Si)₂CuLi, prepared from CuBr·Me₂S and 2 equiv of PhMe₂SiLi, 1 (prepared from (PhMe₂Si)₂ and Li metal),¹³ consisted (in the 0–10 ppm region) of a singlet at 4.2

(15) Gilman, H.; Schulze, F. J. J. Am. Chem. Soc. 1925, 47, 2002. (16) K_2 was estimated using the expression:

$$K_2 = \frac{[(PhMe_2Si)_3CuLi_2]}{[(PhMe_2Si)_2CuLi] [PhMe_2SiLi]} = 32 \pm 16 \quad (1)$$

The concentrations of silicon-containing species were calculated using the integral ratio for 1, 2, and 6 and the initial concentration of 1 corrected for the number of PhMe₂Si groups in each species. The concentration of LiBr was calculated from the initial concentration of CuBr and the concentration of 6 calculated from the ²⁹Si spectrum.

⁽¹⁴⁾ The combination of PhLi and Ph₂CuLi, in dimethyl sulfide, gave a higher order cuprate, Ph₃CuLi₂.^{14a,b} (a) Bertz, S. H.; Dabbagh, G. J. Am. Chem. Soc. 1988, 110, 3668. (b) Bertz, S. H.; Dabbagh, G. Tetrahedron, symposia-in-print on organocopper chemistry 1989, 45, 425. (c) Similarly, on the basis of ¹H NMR analysis, Ashby^{14d,e} proposed that in solutions containing a 2:1 ratio of MeLi and MeCu an equilibrium existed between the higher order species Me₃CuLi₂, the lower order species, Me₂CuLi, and free MeLi. (d) Ashby, E. J.; Watkins, J. J. J. Chem. Soc., Chem. Commun. 1976, 784. (e) Ashby, E. C.; Watkins, J. J. J. Am. Chem. Soc. 1977, 99, 5312.

⁽¹⁷⁾ Some uncertainty in the measurement of equilibria from ²⁹Si signal intensities could arise from the differential T_1 's of the equilibrating species. It can be estimated from the observation of coalesced ⁷Li (116.6 MHz, $\Delta \delta = 0.1$ ppm and ¹H (300 MHz, $\Delta \delta = 0.1$ ppm) but not the ²⁹Si (79.495 MHz) spectra that the silicon species are equilibrating with a rate constant between 30 and 79 Hz which is ~10 times faster than the acquisition time (0.2 s) for ²⁹Si NMR experiments; therefore, the effective T_1 's of the equilibrating species would be equivalent under these conditions.

ppm. This was attributed to halide-free (PhMe₂Si)₂CuLi (6) due to the precipitation of LiBr from DMS. Substitution of CuI for CuBr·Me₂S exhibited two signals: one major (δ 4.9) and a minor one at 4.2 ppm due to different methyl groups (Figure 3b). These were assigned to (PhMe₂Si)₂CuLi·LiI, 7, and (PhMe₂Si)₂CuLi, 6, respectively, since the resonance of the methyl in the ¹³C NMR spectrum of the latter was at the same position (δ 4.2) as the methyl resonance of (PhMe₂Si)₂CuLi derived from CuBr.

The ⁷Li NMR spectra of (PhMe₂Si)₂CuLi prepared from CuI and CuBr were in harmony with the ¹³C NMR results. At -70 °C in DMS, the ⁷Li spectrum of the reagent prepared from PhMe₂SiLi and CuBr·Me₂S (minus LiBr) showed a single resonance at 0.43 ppm, which is assigned to the halide-free species, 6. Under the same conditions the ⁷Li NMR spectrum of CuI-derived (PhMe₂Si)₂CuLi consisted of two signals, the major one at δ 0.77 was assigned to the LiI-complexed copper cluster (7), while the minor one (δ 0.58) was attributed to the halide-free complex (6).

The ⁱ³C NMR spectrum of (PhMe₂Si)₃CuLi₂, prepared by the addition of LiCl-free 1 to LiBr-free (PhMe₂Si)₂CuLi (6), exhibited signals corresponding to LiBr-free lower order cuprate, (PhMe₂Si)₂CuLi, 6 (δ 4.2), and the LiBr-free higher order species 2 (δ 5.4, Figure 3c). Similarly, (PhMe₂Si)₃CuLi₃ (2) prepared from CuI exhibited two major high-field methyl resonances at δ 4.9 and 5.4 ppm which were attributed to (PhMe₂Si)₂CuLi-LiI (7) and (PhMe₂Si)₃CuLi₂ (2), respectively, along with a minor peak at δ 4.2 ppm which was earlier assigned to (PhMe₂Si)₂CuLi (6) (Figure 3d).

In agreement with the above results, the ⁷Li NMR spectrum of CuBr·Me₂S derived (PhMe₂Si)₃CuLi₂ in DMS exhibited signals at 0.55 and 0.21 ppm attributable to 6 and 2, respectively, while (PhMe₂Si)₃CuLi₂ prepared from CuI consisted of a broad multiplet spanning the region assigned to LiI-containing lower order species (0.76 ppm) and halide-free (PhMe₂Si)₃CuLi₂ (2, \sim 0.29 ppm). The presence of broad signals in these spectra indicate that rate of exchange between the various lithium-containing species is near the NMR time scale, an observation with literature precedent.^{18,19}

In DMS 7 and 6 are in dynamic equilibria with 2 as represented in Scheme II. Reversible interconversion between $(PhMe_2Si)_2CuLi$ and $(PhMe_2Si)_2CuLi$ ·LiX was established by observation that the silvl methyl signals in these species coalesce to a single peak as the temperature is increased from -85 °C to 0 °C, and upon cooling to -85 °C, the same two-signal pattern reappears.

That LiBr is also associated with (trialkylsilyl)cuprates in THF was evident from ¹³C NMR spectroscopy of (PhMe₂Si)₂CuLi (prepared from 2 equiv of LiCl-free PhMe₂SiLi¹³ and CuBr·Me₂S at -85 °C). The ¹³C NMR spectrum of this solution (Figure 3a') showed two methyl

signals, the major one at 4.9 ppm and a minor at 4.2 ppm which are very close to analogous methyl resonances assigned to $(PhMe_2Si)_2CuLi\cdotLiI$ (7) and $(PhMe_2Si)_2CuLi$ (6), respectively, in DMS (Figure 3b).

It appears that the lower order silylcuprate $(PhMe_2Si)_2CuLi$ is a more complex species than its straightforward preparation indicates. In DMS, when it is prepared with CuI, this reagent consists mostly of the LiI-associated copper species, $(PhMe_2Si)_2CuLi$ ·LiI (7), but when it is derived from CuBr·Me₂S, it is free of LiBr. In THF, when CuBr·Me₂S is used in the preparation of this reagent exists primarily as LiX-associated copper species 7 and should be represented as $(PhMe_2Si)_2CuLi$ ·LiX (Scheme III). One would expect the degree of association of LiX with lower order silylcuprates to vary with the nature of the silyl substitution. We suspect the trends discovered in this study wherein LiX association is high in solvents such as THF in which the LiX salts are soluble to be general.

The proposed formation of $(PhMe_2Si)_2CuLi\cdotLiX$ in THF provides an explanation for the observation that 6 exhibited a ²⁹Si NMR chemical shift (Figure 1d) similar to that assigned to $(PhMe_2Si)_2Cu(CN)Li_2$, 3. Thus, if the former existed primarily complexed with LiBr, the only structural difference between 3 and 6 is the substitution of a CN by a Br.

Treatment of cyclohex-2-en-1-one, 8, with 1 at -45 °C yielded 62% of 1,2-addition product, 1-(dimethylphenylsilyl)cyclohex-2-en-1-ol, whereas reaction of this substrate with 6, 3, 2 or solutions of 1 and CuBr·Me₂S in ratios between >3:1 and 10:1 gave exclusive 1,4-addition product, 3-(dimethylphenylsilyl)cyclohexanone. These results show that silylcuprates 2, 3, and 6 behave in a fashion analogous to alkylcuprates in delivery of their anionic ligands in a 1,4-fashion even when copper is present only in catalytic concentrations.²⁰ Thus 1,4-addition of silylanions bound to copper must be faster than 1,2-addition of the unbound species. These observations also suggest that under catalytic conditions, PhMe₂SiLi serves to rapidly convert lower order cuprate formed as a result of silyl transfer back to a higher order cuprate.

Summary

Comparison of the present silvlcuprate system with that of the methylcuprate¹⁸ system reveals several differences. When the ratio of RLi (R = PhMe₂Si or Me) to CuX (X = I or Br) is 2:1, a new species, (PhMe₂Si)₂CuLi·LiX, is

⁽¹⁸⁾ Lipshutz, B. H.; Kozlowski, J. A.; Breneman, C. M. J. Am. Chem. Soc. 1985, 107, 3197.

 ^{(19) (}a) Hogan, R. J.; Scherr, P. A.; Weibel, A. T.; Oliver, J. P. J.
 Organomet. Chem. 1975, 85, 265. (b) Cox, R. H.; Terry, W. H. J. Magn.
 Reson. 1974, 14, 317.

^{(20) (}a) Matsuzawa, S.; Horiguchi, Y.; Nakamura, E.; Kuwajima, I. Tetrahedron, symposia-in-print on organocopper chemistry 1989, 45, 349. (b) Oppolzer, W.; Kingma, A. J.; Poli, G. Tetrahedron, symposiain-print on organocopper chemistry 1989, 45, 479. (c) Still, W. C.; Macdonald, T. L. Tetrahedron Lett. 1976, 2659. (d) Still, W. C. J. Org. Chem. 1976, 41, 3063.

formed in the case of silylcuprates, whereas, in the case of alkylcuprates, solutions prepared from 2 equiv of MeLi and CuX are composed of an equilibrium mixture of MeLi plus Me₃Cu₂Li and Me₂CuLi. In the case of lower order, Me₂CuLi, association of alkyl residues with copper beyond this stoichiometry does not occur, and further addition of MeLi beyond this point gives solutions containing free MeLi.¹⁸

In the case of lower order, $(PhMe_2Si)_2CuLi\cdotLiX$, addition of further silyllithium gives solutions which contain negligible free silyl anion and whose ²⁹Si NMR spectra support the association of three silyl residues with the copper. In THF the novel species, $(PhMe_2Si)_3CuLi_2$ is formed regardless of which copper(I) salt is employed.⁷

In DMS, analogous to phenylcuprates,^{14a} (PhMe₂Si)₂CuLi (derived from CuI) exists as an equilibrium mixture of halide-containing (PhMe₂Si)₂CuLi·LiI (7), and halide-free, (PhMe₂Si)₂CuLi (6), species whereas CuBr-derived lower order silylcuprates are primarily devoid of LiBr because of the insolubility of this salt in this solvent.

Experimental Section

The ²⁹Si, ¹³C, and ⁷Li NMR parameters as well as general experimental procedures were reported earlier.⁷ A vacuum jacketed, glass dewar measuring 7.5×16.0 cm (i.d. 5.5 cm) was designed with tapering a bottom to fit in the cup of a vortex mixer and was used to mix samples at subambient temperatures. CuBr·Me₂S was recrystallized by the procedure of House.²¹

Preparation of PhMe₂SiLi/THF, 1. (Dimethylphenylsilyl)lithium was prepared as previously described⁷ and titrated according to the procedure of Fleming et al.⁴

Preparation of PhMe₂SiCu, 5. CuBr·Me₂S (0.41 g, 2.0 mmol) was placed in a 10-mm NMR tube, equipped with an argon inlet. The tube was repeatedly ($3\times$) evacuated (vacuum pump) and purged with argon. Me₄Si (0.5 mL) was injected, the tube was cooled to -50 °C, and (dimethylphenysilyl)lithium in THF (1.8 mL, 2.0 mmol) was added dropwise. The solution was vortexed at -50 °C (vide supra) before recording the spectrum.

Preparation of (PhMe₂Si)₂**CuLi, 6.** A THF solution of PhMe₂SiLi (1.8 mL, 2.0 mmol) was added to a 10-mm NMR tube containing a THF solution of "PhMe₂SiCu" (vide supra) at -50 °C. The deep red solution was stirred for 20 min at -50 °C prior to examination by NMR.

Preparation of (PhMe₂Si)₃CuLi₂, 2. To a THF solution of (PhMe₂Si)₂CuLi (2.0 mmol) prepared as outlined above was added a THF solution of PhMe₂SiLi (1.8 mL, 2.0 mmol) at -50 °C. The reaction mixture was stirred for 20 min before examination by NMR.

Preparation of (PhMe₂Si)₃CuLi₂, 2, from CuCN. The preparation of this solution is described elsewhere.⁷

Regeneration of (PhMe₂Si)₂CuLi. CuBr·Me₂S (0.205 g, 1.0 mmol) was added to the solution generated by mixing PhMe₂SiLi and CuBr·Me₂S in a 3:1 ratio. The reaction mixture was stirred for 20 min before examination by NMR. This mixture gave the same NMR signals as 6.

Regeneration of PhMe₂SiCu. CuBr·Me₂S (0.41 g, 2.0 mmol) was added to the NMR tube containing lower order silylcuprate, 6. The reaction mixture was stirred for 20 min at -50 °C and then examined by NMR.

Preparation of (PhMe₂Si)₂CuLi for ¹³C NMR Analysis. CuBr·Me₂S (0.154 g 0.75 mmol) was added to a 5-mm NMR tube, equipped with an argon inlet. The reaction was cooled to -78°C, and (dimethylphenylsilyl)lithium in THF (1.7 mL, 1.50 mmol) was added dropwise. The solution was stirred on a vortex mixer (vide supra). The spectra were recorded immediately at 0 °C.

Preparation of (PhMe₂Si)₂Cu(CN)Li₂ for ¹³C NMR Analysis. This solution was prepared as described earlier.⁷ Bronzentian of PhMe Sil in DMS 1. Totramethyldi

Preparation of PhMe₂SiLi in DMS, 1. Tetramethyldiphenyldisilane (3.6 g, 21 mmol) was stirred with small pieces of

lithium (0.450 g, 64.0 mmol) in THF (20 mL) at -5 °C in an ice/salt bath. The reaction was initiated by immersion of the reaction flask in a sonicator for 30 min, and then the mixture was stirred overnight at -5 °C. THF was removed under vacuum and replaced with equal volume of DMS. This procedure was repeated three times. (Dimethylphenylsilyl)lithium was titrated according to the procedure of Fleming et al.⁴

Preparation of (PhMe₂Si)₂CuLi from CuBr·Me₂S in DMS for ¹³C and ⁷Li NMR Analyses. CuBr·Me₂S (0.154 g 0.75 mmol) was added to a 5-mm NMR tube, equipped with an argon inlet. The reaction was cooled to -78 °C, and (dimethylphenylsilyl)lithium in DMS (1.7 mL, 1.50 mmol) was added dropwise. The solution was stirred on a vortex mixer (vide supra). The spectra were recorded at -85 °C immediately.

Preparation of (PhMe₂Si)₂CuLi from CuI in DMS for ¹³C and ⁷Li NMR Analyses. (PhMe₂Si)₂CuLi was prepared as above except for the substitution of CuI (0.143 g 0.75 mmol) for CuBr·Me₂S.

Preparation of 1-(Dimethylphenylsilyl)cyclohex-2-en-1-ol. This reaction was conducted as reported previously.⁷

Typical Procedure for Reactions of Silylcuprates with 8. PhMe₂SiLi (1.25 mL, 1.0 mmol) was added dropwise at -45 °C to CuBr·Me₂S (0.10 g, 0.5 mmol) in THF (2 mL) under argon. The resulting deep red solution was stirred for 0.5 h after which 8 (0.04 mL, 0.41 mmol) was added via a syringe. All reactions were stirred for a further 0.5 h and then quenched with saturated NH₄Cl/10% NH₄OH. Standard workup and the spectral data are already reported.^{7,22}

Gilman Tests. Cuprates used in the ²⁹Si NMR studies were subjected to Gilman tests as described previously.^{7,15}

Acknowledgment. This work was supported by an operating grant to ACO from the Natural Sciences and Engineering Research Council of Canada.

Registry No. 1, 3839-31-4; 2, 122343-28-6; 3, 110769-32-9; 5, 122470-45-5; 6, 75583-57-2; 7, 122470-46-6; 8, 822-67-3; CuBr·Me₂S, 54678-23-8; CuCN, 544-92-3; CuI, 7681-65-4; tetramethyldiphenyldisilane, 1145-98-8; 1-(dimethylphenylsilyl)cyclohex-2-en-1-ol, 104066-67-3.

(22) (a) Fleming, I.; Waterson, D. J. Chem. Soc., Perkin Trans. 1 1984,
1809. (b) Bernhard, W.; Fleming, I.; Waterson, D. J. Chem. Soc., Chem. Commun. 1984, 28. (c) Ager, D. J.; Fleming, I.; Patel, S. K. J. Chem. Soc., Perkin Trans. 1 1981, 2520.

Ultrasound in Oxochromium(VI)-Amine-Mediated Oxidations-Modifications of the Corey-Suggs Oxidation for the Facile Conversion of Alcohols to Carbonyl Compounds[†]

Laura L. Adams¹ and Frederick A. Luzzio*

Department of Chemistry, University of Louisville, Louisville, Kentucky 40292

Received April 3, 1989

The use of oxochromium(VI)-amine reagents in oxidative transformations is of fundamental importance in organic synthesis. These reagents have been engaged for the general oxidation of alcohols to carbonyl compounds, the selective oxidation of allylic and benzylic alcohols, the oxidation of organometallics, oxidative transpositions, oxidative cleavages, allylic and benzylic oxidations, and oxidative cyclizations.² Pyridinium chlorochromate (PCC, 1), commonly known as the Corey–Suggs reagent,³ leads

⁽²¹⁾ House, H. O.; Chu, C.-Y.; Wilkins, J. M.; Umen, M. J. J. Org. Chem. 1975, 40, 1460.

[†]Dedicated to the memory of Dr. Charles M. Apt.